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Abstract

Within the general framework of mixture theory and by introducing the fictitious “fluid phase” as a mixture of a
liquid and a gas, the conditions for localization of deformation into a shear band in the incremental response of
partially saturated and fully saturated elastic—plastic porous media under undrained conditions are derived. The effect
of porosity is included in the derivation. The explicit analytical expressions of the direction of shear band initiation and
the corresponding hardening modulus of the porous media for the plane strain case are deduced, and a parametric
analysis is made of the influence of the porosity on the properties of strain localization based on Mohr—Coulomb yield
criterion. It is found that the dependence of the shear banding properties of partially saturated porous media on the
porosity is related to the stress states and Poisson’s ratio. However, the properties of the strain localization for the fully
saturated porous media are almost independent of Poisson’s ratio. Finally, on the basis of Mohr—Coulomb yield cri-
terion, some solutions of the shear banding orientation for water-saturated granular materials are obtained, which are
proved to be in good agreement with the experimental results reported by other researchers. © 2002 Elsevier Science
Ltd. All rights reserved.

Keywords: Porosity; Strain localization; Porous medium; Undrained condition

1. Introduction

Strain localization of plastic flow into shear bands is observed on a wide class of engineering materials,
including metals, soils, concretes and rocks. Localized deformation is typically followed by a reduction in
overall strength of the material body as loading proceeds (Read and Hegemier, 1984). It is therefore of
considerable interest as a precursor of failure phenomena. A suitable tool for describing localization in solid
mechanics is based on the strain rate discontinuity in continuum theory. It was first proposed by Hadamard
(1903) and later developed by Thomas (1961), Hill (1962), Mandel (1963), and Rice (1976). It was applied
to predict the existence and orientation of shear bands within various types of materials (Rudnicki and
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Rice, 1975; Rice and Rudnicki, 1980; Vardoulakis, 1980; Molenkamp, 1985; Ottosen and Runesson, 1991;
Runesson et al., 1991; Bigoni and Hueckel, 1991a,b; Schreyer and Zhou, 1995; Zyczkowski, 1999).

Most of the works published so far only involve the behavior of single-phase materials. However, strain
localization phenomena are also relevant for elastic—plastic porous solids. Strain localization for this sort of
materials is generally discussed under locally undrained conditions. Some results can be found from the
papers by Rice (1975), Rice and Cleary (1976), Rudnicki (1983) and Han and Vardoulakis (1991). The effect
of pore fluid compressibility on localization in elastic—plastic porous solids subjected to undrained con-
ditions was investigated by Runesson et al. (1996). Zhang and Schrefler (2001) studied the conditions for
localization of deformation into a planar (shear) band and loss of uniqueness in the incremental response of
elastic—plastic saturated porous media.

For porous media, porosity is an important material parameter. Therefore in this paper, based on the
theory of mixtures (Bowen, 1982), the porosity is taken into account in the analysis of strain localization of
partially saturated and fully saturated porous media under undrained conditions. The porous body is
assumed to be elastic—plastic, subjected to small deformations and obeying a quite general non-associated
flow rule. It is revealed from the investigation that the influence of the porosity on the onset of strain
localization is of great significance. The result is in good agreement with the experiment data obtained by
Han and Vardoulakis (1991).

Notations and conventions: Compact or index tensorial notation will be used throughout the paper.
Tensor quantities are identified by boldface letters. Symbols °.” and ‘.’ between tensors of various orders
denote their inner product with single and double contraction, respectively. The dyadic product of two
tensors is indicated with ‘®’. 8 denotes the second-order identity tensor (Kronecker delta). I denotes the
fourth-order identity tensor, which is defined as Iy = (1/2)(0x9; + 6;0;). Summation applies over re-
peated mute Latin indices but, unless otherwise stated, not over Greek indices. ‘tr’ denotes the trace op-
erator, e.g. for the second-order symmetric stress tensor o, tre = o;.

2. Elastic—plastic constitutive equations for porous media under undrained conditions

The theory of mixtures is an effective method to deal with multiphase porous media such as soils and
fissured rocks (Bowen, 1982). In practical engineering, the porous media are generally three-phase systems
which consist of solid phase, liquid phase and gas phase. Fully saturated porous media are only made up of
two constituents, a solid and a liquid. Therefore, whether the gas phase exists in the porous solid or not is
the symbol to differentiate the partially saturated and fully saturated porous media. Both the liquid phase
and the gas phase should be described accurately in order to effectively expound the properties of defor-
mations and strengths of the media. The liquid phase usually can be described by Navier-Stokes equation
and the gas phase by the gas equation of state (Zienkiewicz et al., 1993). However, the gas phase of the
porous body in practical engineering is usually the mixture of vapor and air. In general, only dry air can be
accurately described by the equation of state of idealized gas. It is difficult to delineate the state of the mixed
gas due to the existence of vapor. For this reason, a fictitious “fluid phase” is assumed to simulate the
mixture that consists of the actual liquid phase and gas phase, whose property is determined by those of the
actual liquid phase and gas phase. It is feasible as the actual liquid phase has some dissolved air and is a
mixture of liquid and gas, whereas the actual gas phase can be considered as the mixture made up of the
undissolved air and vapor.

The degree of saturation of porous media can be modeled by the compressibility of the “fluid phase”. A
liquid can usually be thought of having little compressibility. However, an actual gas has much com-
pressibility. Consequently, the “fluid phase” should have some degree of compressibility as a mixture of a
liquid and a gas, and the compressibility increases with the increment of the gas content. Thus it can reflect
the degree of unsaturation of the porous media indirectly with the compressible “fluid phase” model.
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Thus, the porous media in geotechnical engineering can be modeled as mixtures made up of solid phase
(S) and “fluid phase” (F), and the “fluid phase” consists of liquid (L) and undissolved gas (G). Each phase
has a mass M, and a volume V,, « = S, F, which make up the total mass M = Mg + Mg and the total volume
V="Vs+ VE.

The intrinsic quantities, labeled by superscript R, and the apparent or partial quantities are defined at
each point of each phase. For example, the intrinsic mass density is defined as p® = M, /V,, whereas the
apparent mass density is defined by p, = M, /V. Hence, p, = m,pR, where m, = V,/V is the volume fraction
of phase «. For the porous media in geotechnical engineering, it has

mg +mp =1 (1)

where the volume fraction myp of “fluid phase” is just the porosity of the porous body.
If the contribution due to diffusion is ignored, the total stress tensor of the mixture is

6 = o5 + o = (1 — mp)og + mroy )
and the strain rate tensor of each phase has (Yang and Yu, 2000)
& =¢ o=SF (3)

In Eq. (2), 6, is the partial stress tensor and ¢~ the intrinsic stress tensor, o = S, F. If the internal structure
remains constant during the deformation process, namely m,, « = S, F will not change, it has

If the internal structure of the “fluid phase” as a two-phase mixture remains the same, i.e., no phase
transition happens, and the “fluid phase” follows the elasticity laws, it has

R =Pl =Kp(d®3):¢ (5)
under undrained conditions, where compression is defined as positive, P} is the intrinsic pore pressure,

PR =Kp(8: &) (6)
and Kr is the bulk compression modulus of the “fluid phase”, which is defined as follows:

Ky =m Ky + (1 — mp)Kg (7)

where K} and Kg are the bulk modulus of the liquid and gas, respectively; my is the volume fraction of the
liquid in the “fluid phase”, namely the so-called degree of saturation in soil mechanics, which is defined by
the equation my, = 1/ Vk.

It is well known that the deformation and strength of porous media (e.g. soils) under loading is not
determined directly by the total stress but the effective stress, which can be defined as (Terzaghi, 1943)

From Eq. (8), we have

=66t )
Substituting Eq. (4) into Eq. (9), we obtain
6 = (1 — mg)(65 — 67) (10)

Defining the yield function F and the plastic potential G in the effective stress space, the relation between
the effective stress and strain can be expressed as

¢ =FE :¢ elastic unloading (11)

¢ =D’ :¢ plastic loading (12)
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where the effective elastic tangent stiffness tensor E' is defined as
E' = (1 —mp)(Es — Kr(8 ©9)) (13)

in which Eg is the elastic tangent stiffness tensor of the solid phase in the porous body, and the effective
elastic—plastic tangent stiffness tensor D' is given as

! 1 /
D' =E - (E:Q)® (P E) (14)
where
oF oG
p O Sl
P - 66/7 Q 66/ (15)
The positive scalar A’ is defined as
A=P:E:Q+H >0 (16)

where H' is a generalized plastic modulus that is positive, zero or negative for hardening, perfect or soft-
ening plasticity, respectively.
Combining Egs. (5), (9), (11) and (12), it has

6 =E:¢ elastic unloading (17)

6 =D :¢ plastic loading (18)
where the tangent stiffness moduli are given as

E=E +Krd®8 (19)

D=D+Kd®$6 (20)

Egs. (17) and (18) are the total stress—strain relations of the porous media under the undrained conditions.

3. Formulations of localization under undrained conditions

In the following derivations, we assume that the elastic—plastic porous media are isotropic and the in-
ception of strain localization will be accompanied by the generation of a characteristic internal break
surface (discontinuity) with unit normal n. The localization of deformation into shear bands takes place
when a strain rate discontinuity occurs across the band. We assume that plastic loading is maintained for
the primary as well as the bifurcated solutions. Upon using the conditions that the rate of total traction is
continuous and that mass conservation prevails across the band, the following expressions can be derived
from Egs. (6) and (8) for porous media:

L' m+ [Pn=0 (21)
m-n—Ki[P;‘]:o (22)

where m is a vector describing the discontinuity of the strain rate, [PR] represents the discontinuity of the
pore pressure rate, and L’ is the effective characteristic tangent stiffness tensor (effective acoustic tensor),
which is defined by

1
L/:L’e—Zana7 L°=n-E'-n (23)
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where the vectors a and b are defined as

a=P :E n, b=Q :E -n (24)
From Egs. (21) and (22), we have

L m=0 (25)
where

L=n-D-n=L+Kmn®n (26)
Eliminating m between (21) and (22), we can also obtain

(n-M’-nJrKLF)[Pg]:o (27)

where tensor M’ is the inverse of tensor L', which is derived as
1

A —a:M*°:b

where M* = (L)™', It is concluded that a non-trivial solution [PR] of Eq. (27) is possible only if the scalar

coefficient vanishes, i.e.

1
Kr
Combining Egs. (16), (28) and (29), we obtain a condition on H’ that must be satisfied at the onset of
localization:

M/ _ (L/)fl — M/e + (M/e . b) ® (a . M/e) (28)

n-M-n+—=0 (29)

. M/C . b . Mle .
H =P E:Q+a-M-b—y® n~lll\)/[('e-n n) (30)
where the scalar iy is given as
Ken-M” - n
— 31
4 14+ Ken-M*-n (31)

Following Ottosen and Runesson (1991), the critical-hardening modulus H! corresponding to strain
localization is defined as the constrained maximization of H' over all possible shear band directions n for
a given state, i.e.

H! =MaxH'(n), s.t. |nj=1 (32)
Assuming that the solid phase is isotropic, then
v
E =26(1+;-5.85) (33)

where G is the shear modulus and v is Poisson’s ratio of the solid phase. In general, 0 < v < 1/2.
Inserting Eq. (33) into (13), we have

E’2G(lmp)[l+<1_vzvfg>6®8} (34)

Substituting Eq. (34) into (23), it has

L’e:G(l—mF)[(l_lzv—%)né@n—i-S] (35)




1822 Y.-0. Zhang et al. | International Journal of Solids and Structures 39 (2002) 1817-1831

, 1 (1-2v)Kg — G
M = 36
G G e " (36)
and the vectors a and b in Eq. (24) can be expressed as
_ , v K]: ,
a=2G(l — mp) {P n+ (12\) 2G)(trP)n} (37)
o ’ v KF ’
By substituting Egs. (34) and (36)—(38) into Egs. (30) and (31), it has
H' vl -y)

E:Zm(P’~Q/)~n+ﬁ[(n'Q’~n)trP'+(n'P’-n)trQ/]

I+ =20y (11__5”‘” (n-P-n)(n-Q -n)— —ﬁ((ll__ég i ;v‘/)’ (trP)(trQ) — P’ : Q' (39)
where
1 - 25 Ky =25 ke )
¢:<1—9E><1+1—9E> “
G=(1-m)G (41)
G 2vG — (1 — 2v)Kk (42)

2[G — (1 - 2v)Kr]

When the porosity mg = 0, the porous material reduces to a single-phase solid material, i.e., Kg = 0,
Y = 0. As a result, the solution of the porous media expressed by Eq. (39) reduces to the solution of the
single-phase solid obtained by Ottosen and Runesson (1991).

When the porosity my # 0 and the saturation m;, = 0, the porous media are mixtures made up of a solid
and a gas, namely K = Kg. With the increment of the gas compressibility, Kg = Kg — 0, and then y — 0,
v — v. When the porous media are fully saturated, as liquid has little compressibility, Kr = K. — 0o, which
causes Y — 1/mg, v — 1/2. Thus, for the porous media in geotechnical engineering, the parameter { can
reflect the degree of saturation of the porous media indirectly, and 0 < ¥ < 1/mg. For soils the ratio Kr/2G
generally ranges from 107! to 103, which represents the extreme states of moduli for partial and full liquid
saturation, respectively. Choosing v = 0.2, which is typical for clay, and assuming mg = 0.4, then i/ ranges
from 0.12 to 2.5. In addition, it should be noted that the parameter v ranges from —oo to oo with the
variation of ratio Kr/2G when Poisson’s ratio v remains constant.

4. Critical hardening modulus and the corresponding direction of shear band initiation under plane strain
condition

It is assumed that P’ and Q' possess the same principal directions and two of the principal directions (x;
and x,) are located in the plane of interest. Hence, the x;-direction is out of plane and n; = 0. Without loss
of generality we also label the in-plane axes so that P| > P;. Under very mild constraints on the flow rule,
this choice will also imply that O] > @), which is assumed subsequently.
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With the assumption given above, the expression for H' at strain localization in plane strain can be
expressed as a special case of Eq. (39), i.e.

! 1-2
f_é = a\n; + ayn; — % (P{n} + Pin3) (Q)m; + Ohn3) — (43)
where
=2P0, +M(Q trP' + P trQ’), «=1,2 (no summation) (44)
and
V(1 —29) + vy , : : !
k= m(”’)(trQHPQﬁPQﬁPQ; (45)

In order to get the critical value H, corresponding to initiation of shear banding, we differentiate Eq.
(43)

d H 1
M(E) :1_‘7[01—(01—02)nﬂ =0 (46)
where ¢; and ¢, are given as
ar = (P = P)(Q) +V0,) + (0} — O5) (P + ¥P3) — yry (47)
ey = (Pl = P)(0Q, + VD) + (0] — O3)(Py + ¥P3) — yrs (48)
and r; and r, are given as
rn= (P -P)itrQ + (1 -2V)0] + (0, — 0y)[FtrP' + (1 - 23)P] (49)
= (P = P)trQ + (1 =29)0)] + (0} — O5)[Ftr P’ + (1 —27)P]] (50)
If
& [ H 1
W<E>:—l_{)(61—02)<0 (51)

is satisfied, then the solutions of Eq. (46) which satisfy 0<ni <1 correspond to the maximum value of
H'.
Only the case defined by P > P;, 0} > 0, will be discussed hereafter. From Eq. (46), it has

¢ 1
n = L m=1-n=- 2 (52)
L —C Cl —C

which is valid whenever 0 <n? <1 (or 1 > n} > 0) is satisfied, then the directions of shear band initiation

can be defined as
n c
tan’ 0 = - = ——
n; Cy

(53)

where 0 denotes the angle in the x;, x,-plane between the x,-axis and the normal vector (ny,n;), and it
is assumed that 0°<60<90°. The corresponding maximum hardening modulus H/, can be obtained by
inserting Eq. (52) into Eq. (43).

If the condition 0 < nf < 1 is not satisfied, the following cases occur:

d(jz) (H%) < 0, H' assumes its maximum value when 6 = 0°.
1 2G

e Similarly,

d(d2> (i) > 0, H' assumes its maximum value at 6 = 90°.
) \2G
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5. Analysis of strain localization based on the Mohr—Coulomb criterion

The Mohr-Coulomb yield criterion and plastic potential can be defined as follows:

F= %(ai — Gin) + %(ai + aiH) sing—c=0 (54)

G =10} — o) +1(0} + o}y sin p* (55)

where o] > o}, > o}, are the effective principal stresses (which are taken positive in compression), ¢ is the
angle of internal friction, ¢* is the angle of dilatancy, and ¢ is a cohesion intercept. It should be noted that
generally ¢ = ¢* = 0.

Since the in-plane effective principal stresses are usually defined as o} > g, there are three cases de-
pending on the magnitude of the out-of-plane stress a7%.

Case A. When o' > o), > o5, it has ¢ = ¢} and oy = 0}, and from Egs. (54) and (59),

Pl =1(1+sing), P, =0, Py = —1(1 —sin ) (56)

0y =5(1+sing"),  0,=0,  Qy=—3(1-sing’) (57)
and

tr P’ = sin ¢, trQ’ = sin o* (58)
Substituting Eqgs. (56)—(58) into Egs. (47) and (48), it has

1 Vv v

] = §A1 — 7¢A2, Cy = —§A3 — %A4 (59)

where

A =1—V+sing+sing” + (1 +¥)sin ¢ sin ¢
Ay = sin ¢ + sin ¢* + 2 sin ¢ sin ¢*
A; =1 —sin ¢sin ¢*

Ay =1-=294 (1 —¥)(sin @ + sin @*) + sin ¢ sin @
If the condition defined by Eq. (51) is satisfied, from Egs. (52) and (53), the following can be derived
2 Ar — v, 5 VA3 + YA,

= = 60

. Ay — WAy + VA3 + YA, "2 Ay — WAy + VA3 + A, (60)
Ay — Wpds

tan? ) =——"—= 61

VA3 + YA, (61)

which is valid whenever 0 <»? < 1. The corresponding maximum hardening modulus can be obtained by
substituting Eq. (60) into (43).
Case B. When ¢ > ¢ > 05, it has o] = ¢| and o};; = 05, and from Eqs. (54) and (55),

P =1(1+sing), P =-(1-sing), P =0 (62)

0, =1+sing*),  0h=-41-sing"), ;=0 (63)

and
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trP’ = sin ¢, trQ’ = sin ¢*

Then ¢; and ¢, can be similarly derived and given as

1 1
= 531 —%327 c = —533 +%B4

where
By =2+ sin ¢ + sin ¢*

By =4V — 2 +sin ¢ + sin @*
B3y =2 —sin¢@ — sin ¢*
By=4vy—2 —sin¢p —sin ¢”
If the condition defined by Eq. (51) is satisfied, then

. B, — yB, 2o By — /By

: — By + By — yiBy’ ? — B, +B; — YB,
By —yB,

tan’ 0 = —— =

an B, — VB,

(66)

(67)

which is valid whenever 0 < n? < 1. The corresponding maximum hardening modulus can be obtained by

substituting Eq. (66) into (43).
Case C. If ¢ > 0] = ), then ¢| = 7}, aiH = ¢5, and from Eqgs. (54) and (55), it has

P =0, Py = —1(1 —sing), =1(1+sing)

0, =0, 0y=-3(1-sing’),  Oy=4i(1+sing")
where

trP’ = sin ¢, trQ’ = sin ¢*
Similarly, it has

1 -
%CL e =-C id

v
a=36- 297

C
7 4

where
C; =1 —singsin "
C,=2v—1+ (1 —v)(sin¢ + sin ¢*) — sin ¢ sin ¢*
C;=v—1+sing+sine* — (1 + V) sin ¢ sin ¢*

Cy =sin ¢ + sin ¢ — 2sin ¢ sin ¢*
If the condition defined by Eq. (51) holds, then

. G — Yy G G WG
VG =y G — G+ WGy 29C —yYC — G+ WGy

vC —y Gy

tan2 0= —_—
-G+ WGy

(68)

(69)

(70)

(71)
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which is valid whenever 0 <n? < 1. The corresponding maximum hardening modulus can be similarly
determined by substituting Eq. (72) into (43).

6. Comparison with the experimental results

The behavior of water-saturated granular materials subjected to undrained deformations under plane
strain condition has been investigated by Han and Vardoulakis (1991). The experimental results about the
shear band orientations @ presented in that study indicate a relation ® = 90° — 0. When the porous media
are fully saturated, by assuming the liquid is completely incompressible, from Egs. (40) and (42), it has
Y = 1/mg, and v = 0.5. Hence it can be concluded that the properties of strain localization of fully satu-
rated porous media under undrained conditions are independent of Poisson’s ratio if assuming the liquid is
totally incompressible.

Although the liquid in fully saturated porous media has little compressibility, it is in fact not com-
pletely incompressible. Here we let Kg/2G = 1000 correspond to the fully saturated state, then from
Eq. (42) it has

_ 2001y — 1000

¥~ 4000v — 1999 74)
It is noted from Eq. (74) that the values of v are approximately equal to 0.50025 when Poisson’s ratio v
ranges from 0.01 to 0.49. Hence it can be regarded that the properties of strain localization of fully sat-
urated porous media under undrained conditions are almost independent of Poisson’s ratio.

For the plane strain problems in practical engineering, the out-of-plane principal stress is usually the
intermediate principal stress (Lee and Ghosh, 1996), and the stress state is the same as that of case B in
Section 5. If the deformation inside the shear band is undrained and the band material is fully saturated, the
shear band dilatancy angle ¢* must be zero (Han and Vardoulakis, 1991). Table 1 shows the comparison of
the experiment results and the solutions with the present method in this paper (based on the Mohr—
Coulomb yield criterion).

It is observed from Table 1 that the solution derived by the present method which considers the influence
of the porosity on the properties of shear banding are in good agreement with the experimental results.

7. Examples

In this section, based on the Mohr—Coulomb criterion, the influences of some material parameters on the
properties of the strain localization for the plane strain problems are discussed. As the out-of-plane
principal stress is usually the intermediate principal stress for the plane strain problems in practical engi-
neering, only the stress state of case B in Section 5 is considered.

Table 1
Comparison of shear band directions
Test mg ® o* O (experiment) © = 90° — 0 (present theory)
DC4 0.393 ~33° 0° 57° 57.4°
DC11 0.374 ~32° 0° 60° 58.2°
LC3 0.371 ~29° 0° 60° 57.2°
LC4 0.410 ~17° 0° 56° 51.3°

DC17 0.407 ~30° 0° 55° 55.7°
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When Kr/G = 1, the porous media are in the case of partial saturation. The dependence of the initiation
direction of the shear band and the corresponding maximum hardening modulus on the porosity is shown
in Figs. 1 and 2, which is for the particular choice ¢ = 25° and ¢* = 5° and for different values of Poisson’s
ratio v. It can be observed from Fig. 1 that the direction 6 of the shear band initiation decreases with the
increase of the porosity mg for all the three cases with v = 0.2, v = 0.3 and v = 0.4. It also shows that at the
same porosity, the angle 0 of the shear band initiation is larger when Poisson’s ratio is larger. It is shown
from Fig. 2 that the effect of porosity on the hardening modulus is much dependent on Poisson’s ratio.
When the porosity remains constant, the hardening modulus decreases with the increase of Poisson’s ratio.

510
50+ mmvm0d T
Ses-v=03
v=02
9+ T
<
=)
48 -
47+ \
0.0 0.1 0.2 03 04 0.5

m F

Fig. 1. Variation of the shear band direction with the porosity for ¢ = 25°, ¢* = 5° in the case ¢} > ¢} > ¢, based on the Mohr—
Coulomb yield criterion for partially saturated porous media.
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Fig. 2. Variation of the maximum hardening modulus with the porosity for ¢ = 25°, ¢* = 5° in the case ¢} > ¢} > ¢, based on the
Mohr-Coulomb yield criterion for partially saturated porous media.
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When Ky /2G = 1000, the porous media can be regarded as fully saturated. The effect of the porosity on
the initiation direction of the shear band and the corresponding maximum hardening modulus is respec-
tively shown in Figs. 3 and 4 for the case of ¢ = 25° and ¢* = 5°. It is obvious from Figs. 3 and 4 that the
porosity of the porous media significantly influences the initiation direction of the shear band and the
corresponding maximum hardening modulus. Thus it is of great importance to take account of the porosity
in the analysis of the strain localization properties of porous media. Furthermore, for fully saturated
porous media with ¢ = 25° and mg = 0.4, variation of the direction of the shear band initiation and the
corresponding maximum hardening modulus with the angle of dilatancy that ranges from 0° to 25° is
estimated and shown in Figs. 5 and 6, respectively. It is observed that the angle 6 of the shear band ini-
tiation decreases almost linearly with the increase of the dilatancy angle while the corresponding hardening
modulus increases almost linearly with the increase of the dilatancy angle.

40
351
30t
25+
20+
15}
10}

0 O

Fig. 3. Variation of the shear band direction with the porosity for ¢ = 25°, ¢* = 5° in the case ¢} > g% > ¢, based on the Mohr—
Coulomb yield criterion for fully saturated porous media.
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Fig. 4. Variation of the maximum hardening modulus with the porosity for ¢ = 25°, ¢* = 5° in the case ¢} > ¢} > ¢, based on the
Mohr-Coulomb yield criterion for fully saturated porous media.



Y.-Q. Zhang et al. | International Journal of Solids and Structures 39 (2002) 1817-1831 1829
36
34
32F
< 30}
R
28

26

24. 1 2 1 L 1 i 1 a1 L 1 1 1 P
o 3 6 9 12 15 18 21 24 27

*

4

Fig. 5. Variation of the shear band direction with the dilatancy angle for ¢ = 25° and mg = 0.4 in the case | > ¢} > ¢ based on the
Mohr-Coulomb yield criterion for fully saturated porous media.
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Fig. 6. Variation of the maximum hardening modulus with the dilatancy angle for ¢ = 25° and mg = 0.4 in the case o] > ¢4 > o) based
on the Mohr—Coulomb yield criterion for fully saturated porous media.

Finally, the influence of degree of saturation on the properties of strain localization is investigated. As it
ranges from 0 to 1/mg when the ratio K¢/2G varies from 0 to oo, the parameter  indicates indirectly the
degree of saturation of the porous media. The relation between the direction 0 of shear band initiation and
the parameter s is shown in Fig. 7 while that between the corresponding hardening modulus A/ and the
parameter i is shown in Fig. 8, both for the case of ¢ = 25°, ¢* = 5°, mp = 0.4 and v = 0.2. It is shown that
the angle 6 of shear band initiation decreases with the increase of the degree of saturation. However, the
hardening modulus decreases slightly with the increase of the degree of saturation when the degree of
saturation is low, and increases sharply with the increase of the degree of saturation when the degree of
saturation is high.
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Fig. 7. Variation of the shear band direction 0 with y for ¢ = 25°, ¢* = 5°, mp = 0.4 and v = 0.2 in the case ¢} > ¢} > o, for based on
the Mohr-Coulomb yield criterion.
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Fig. 8. Variation of the maximum hardening modulus A/, with  for ¢ = 25°, ¢* =5°, mg = 0.4 and v = 0.2 in the case | > 7} > ¢
based on the Mohr—Coulomb yield criterion.

o~

8. Conclusions

Within the general framework of mixture theory, the effective stress—strain and total stress—strain re-
lations of the three-phase elastic—plastic porous media under undrained conditions are derived. Based on
the obtained elastic—plastic constitutive equations and by introducing the fictitious “fluid phase” as a
mixture of liquid and gas, the conditions for localization of deformation into a shear band in the incre-
mental response of partially saturated and fully saturated porous media under undrained conditions are
determined, in which the effect of porosity on the strain localization is included.

The explicit analytical expressions of the direction of shear band initiation and the corresponding
hardening modulus of the porous media for the plane strain case are deduced. With reference to Mohr—
Coulomb yield criterion, an analysis of the influence of the porosity on the properties of strain localization
is performed. The results indicate that the properties of strain localization are much dependent on the
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porosity, and the relation between the shear band property of partially saturated porous media and the
porosity depends on Poisson’s ratio v. However, the properties of strain localization for the fully saturated
porous media are almost independent of Poisson’s ratio. If assuming the liquid is totally incompressible, the
strain localization of fully saturated porous media under undrained conditions is completely independent of
Poisson’s ratio.

Parametric investigation of the influences of the degree of saturation and the angle of dilatancy on the
properties of strain localization indicates that both the degree of saturation and the angle of dilatancy
are of great importance in the analysis of strain localization for the porous media. On the basis of Mohr—
Coulomb yield criterion, use is made of the theory presented in this paper to obtain the solutions of the
shear banding orientation, which are proved to be in good agreement with the experimental results.
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