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Abstract

Within the general framework of mixture theory and by introducing the fictitious ‘‘fluid phase’’ as a mixture of a

liquid and a gas, the conditions for localization of deformation into a shear band in the incremental response of

partially saturated and fully saturated elastic–plastic porous media under undrained conditions are derived. The effect

of porosity is included in the derivation. The explicit analytical expressions of the direction of shear band initiation and

the corresponding hardening modulus of the porous media for the plane strain case are deduced, and a parametric

analysis is made of the influence of the porosity on the properties of strain localization based on Mohr–Coulomb yield

criterion. It is found that the dependence of the shear banding properties of partially saturated porous media on the

porosity is related to the stress states and Poisson’s ratio. However, the properties of the strain localization for the fully

saturated porous media are almost independent of Poisson’s ratio. Finally, on the basis of Mohr–Coulomb yield cri-

terion, some solutions of the shear banding orientation for water-saturated granular materials are obtained, which are

proved to be in good agreement with the experimental results reported by other researchers. � 2002 Elsevier Science

Ltd. All rights reserved.
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1. Introduction

Strain localization of plastic flow into shear bands is observed on a wide class of engineering materials,
including metals, soils, concretes and rocks. Localized deformation is typically followed by a reduction in
overall strength of the material body as loading proceeds (Read and Hegemier, 1984). It is therefore of
considerable interest as a precursor of failure phenomena. A suitable tool for describing localization in solid
mechanics is based on the strain rate discontinuity in continuum theory. It was first proposed by Hadamard
(1903) and later developed by Thomas (1961), Hill (1962), Mandel (1963), and Rice (1976). It was applied
to predict the existence and orientation of shear bands within various types of materials (Rudnicki and
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Rice, 1975; Rice and Rudnicki, 1980; Vardoulakis, 1980; Molenkamp, 1985; Ottosen and Runesson, 1991;
Runesson et al., 1991; Bigoni and Hueckel, 1991a,b; Schreyer and Zhou, 1995; _ZZyczkowski, 1999).

Most of the works published so far only involve the behavior of single-phase materials. However, strain
localization phenomena are also relevant for elastic–plastic porous solids. Strain localization for this sort of
materials is generally discussed under locally undrained conditions. Some results can be found from the
papers by Rice (1975), Rice and Cleary (1976), Rudnicki (1983) and Han and Vardoulakis (1991). The effect
of pore fluid compressibility on localization in elastic–plastic porous solids subjected to undrained con-
ditions was investigated by Runesson et al. (1996). Zhang and Schrefler (2001) studied the conditions for
localization of deformation into a planar (shear) band and loss of uniqueness in the incremental response of
elastic–plastic saturated porous media.

For porous media, porosity is an important material parameter. Therefore in this paper, based on the
theory of mixtures (Bowen, 1982), the porosity is taken into account in the analysis of strain localization of
partially saturated and fully saturated porous media under undrained conditions. The porous body is
assumed to be elastic–plastic, subjected to small deformations and obeying a quite general non-associated
flow rule. It is revealed from the investigation that the influence of the porosity on the onset of strain
localization is of great significance. The result is in good agreement with the experiment data obtained by
Han and Vardoulakis (1991).

Notations and conventions: Compact or index tensorial notation will be used throughout the paper.
Tensor quantities are identified by boldface letters. Symbols ‘.’ and ‘:’ between tensors of various orders
denote their inner product with single and double contraction, respectively. The dyadic product of two
tensors is indicated with ‘�’. d denotes the second-order identity tensor (Kronecker delta). I denotes the
fourth-order identity tensor, which is defined as Iijkl ¼ ð1=2Þðdikdjl þ dildjkÞ. Summation applies over re-
peated mute Latin indices but, unless otherwise stated, not over Greek indices. ‘tr’ denotes the trace op-
erator, e.g. for the second-order symmetric stress tensor r, trr ¼ rii.

2. Elastic–plastic constitutive equations for porous media under undrained conditions

The theory of mixtures is an effective method to deal with multiphase porous media such as soils and
fissured rocks (Bowen, 1982). In practical engineering, the porous media are generally three-phase systems
which consist of solid phase, liquid phase and gas phase. Fully saturated porous media are only made up of
two constituents, a solid and a liquid. Therefore, whether the gas phase exists in the porous solid or not is
the symbol to differentiate the partially saturated and fully saturated porous media. Both the liquid phase
and the gas phase should be described accurately in order to effectively expound the properties of defor-
mations and strengths of the media. The liquid phase usually can be described by Navier–Stokes equation
and the gas phase by the gas equation of state (Zienkiewicz et al., 1993). However, the gas phase of the
porous body in practical engineering is usually the mixture of vapor and air. In general, only dry air can be
accurately described by the equation of state of idealized gas. It is difficult to delineate the state of the mixed
gas due to the existence of vapor. For this reason, a fictitious ‘‘fluid phase’’ is assumed to simulate the
mixture that consists of the actual liquid phase and gas phase, whose property is determined by those of the
actual liquid phase and gas phase. It is feasible as the actual liquid phase has some dissolved air and is a
mixture of liquid and gas, whereas the actual gas phase can be considered as the mixture made up of the
undissolved air and vapor.

The degree of saturation of porous media can be modeled by the compressibility of the ‘‘fluid phase’’. A
liquid can usually be thought of having little compressibility. However, an actual gas has much com-
pressibility. Consequently, the ‘‘fluid phase’’ should have some degree of compressibility as a mixture of a
liquid and a gas, and the compressibility increases with the increment of the gas content. Thus it can reflect
the degree of unsaturation of the porous media indirectly with the compressible ‘‘fluid phase’’ model.
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Thus, the porous media in geotechnical engineering can be modeled as mixtures made up of solid phase
(S) and ‘‘fluid phase’’ (F), and the ‘‘fluid phase’’ consists of liquid (L) and undissolved gas (G). Each phase
has a massMa and a volume Va, a ¼ S, F, which make up the total mass M ¼ MS þMF and the total volume
V ¼ VS þ VF.

The intrinsic quantities, labeled by superscript R, and the apparent or partial quantities are defined at
each point of each phase. For example, the intrinsic mass density is defined as qR

a ¼ Ma=Va, whereas the
apparent mass density is defined by qa ¼ Ma=V . Hence, qa ¼ maqR

a , where ma ¼ Va=V is the volume fraction
of phase a. For the porous media in geotechnical engineering, it has

mS þ mF ¼ 1 ð1Þ
where the volume fraction mF of ‘‘fluid phase’’ is just the porosity of the porous body.

If the contribution due to diffusion is ignored, the total stress tensor of the mixture is

r ¼ rS þ rF ¼ ð1� mFÞrR
S þ mFr

R
F ð2Þ

and the strain rate tensor of each phase has (Yang and Yu, 2000)

_eea ¼ _ee; a ¼ S;F ð3Þ
In Eq. (2), ra is the partial stress tensor and rR

a the intrinsic stress tensor, a ¼ S, F. If the internal structure
remains constant during the deformation process, namely ma, a ¼ S, F will not change, it has

_rr ¼ _rrS þ _rrF ¼ ð1� mFÞ _rrR
S þ mF _rr

R
F ð4Þ

If the internal structure of the ‘‘fluid phase’’ as a two-phase mixture remains the same, i.e., no phase
transition happens, and the ‘‘fluid phase’’ follows the elasticity laws, it has

_rrR
F ¼ _PPR

F d ¼ KFðd � dÞ : _ee ð5Þ
under undrained conditions, where compression is defined as positive, PR

F is the intrinsic pore pressure,

_PPR
F ¼ KFðd : _eeÞ ð6Þ

and KF is the bulk compression modulus of the ‘‘fluid phase’’, which is defined as follows:

KF ¼ mLKL þ ð1� mLÞKG ð7Þ
where KL and KG are the bulk modulus of the liquid and gas, respectively; mL is the volume fraction of the
liquid in the ‘‘fluid phase’’, namely the so-called degree of saturation in soil mechanics, which is defined by
the equation mL ¼ VL=VF.

It is well known that the deformation and strength of porous media (e.g. soils) under loading is not
determined directly by the total stress but the effective stress, which can be defined as (Terzaghi, 1943)

r0 ¼ r � rR
F ð8Þ

From Eq. (8), we have

_rr0 ¼ _rr � _rrR
F ð9Þ

Substituting Eq. (4) into Eq. (9), we obtain

_rr0 ¼ ð1� mFÞð _rrR
S � _rrR

F Þ ð10Þ
Defining the yield function F and the plastic potential G in the effective stress space, the relation between

the effective stress and strain can be expressed as

_rr0 ¼ E0 : _ee elastic unloading ð11Þ

_rr0 ¼ D0 : _ee plastic loading ð12Þ
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where the effective elastic tangent stiffness tensor E0 is defined as

E0 ¼ ð1� mFÞðES � KFðd � dÞÞ ð13Þ
in which ES is the elastic tangent stiffness tensor of the solid phase in the porous body, and the effective
elastic–plastic tangent stiffness tensor D0 is given as

D0 ¼ E0 � 1

A0 ðE
0 : Q0Þ � ðP0 : E0Þ ð14Þ

where

P0 ¼ oF
or0 ; Q0 ¼ oG

or0 ð15Þ

The positive scalar A0 is defined as

A0 ¼ P0 : E0 : Q0 þ H 0 > 0 ð16Þ
where H 0 is a generalized plastic modulus that is positive, zero or negative for hardening, perfect or soft-
ening plasticity, respectively.

Combining Eqs. (5), (9), (11) and (12), it has

_rr ¼ E : _ee elastic unloading ð17Þ

_rr ¼ D : _ee plastic loading ð18Þ
where the tangent stiffness moduli are given as

E ¼ E0 þ KFd � d ð19Þ

D ¼ D0 þ KFd � d ð20Þ
Eqs. (17) and (18) are the total stress–strain relations of the porous media under the undrained conditions.

3. Formulations of localization under undrained conditions

In the following derivations, we assume that the elastic–plastic porous media are isotropic and the in-
ception of strain localization will be accompanied by the generation of a characteristic internal break
surface (discontinuity) with unit normal n. The localization of deformation into shear bands takes place
when a strain rate discontinuity occurs across the band. We assume that plastic loading is maintained for
the primary as well as the bifurcated solutions. Upon using the conditions that the rate of total traction is
continuous and that mass conservation prevails across the band, the following expressions can be derived
from Eqs. (6) and (8) for porous media:

L0 �mþ ½ _PPR
F 
n ¼ 0 ð21Þ

m � n� 1

KF

½ _PPR
F 
 ¼ 0 ð22Þ

where m is a vector describing the discontinuity of the strain rate, ½ _PPR
F 
 represents the discontinuity of the

pore pressure rate, and L0 is the effective characteristic tangent stiffness tensor (effective acoustic tensor),
which is defined by

L0 ¼ L0e � 1

A0 b� a; L0e ¼ n � E0 � n ð23Þ
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where the vectors a and b are defined as

a ¼ P0 : E0 � n; b ¼ Q0 : E0 � n ð24Þ

From Eqs. (21) and (22), we have

L �m ¼ 0 ð25Þ

where

L ¼ n �D � n ¼ L0 þ KFn� n ð26Þ
Eliminating m between (21) and (22), we can also obtain

n �M0 � n
�

þ 1

KF

�
½ _PPR

F 
 ¼ 0 ð27Þ

where tensor M0 is the inverse of tensor L0, which is derived as

M0 ¼ ðL0Þ�1 ¼M0e þ 1

A0 � a :M0e : b
ðM0e � bÞ � ða �M0eÞ ð28Þ

whereM0e ¼ ðL0eÞ�1
. It is concluded that a non-trivial solution ½ _PPR

F 
 of Eq. (27) is possible only if the scalar
coefficient vanishes, i.e.

n �M0 � nþ 1

KF

¼ 0 ð29Þ

Combining Eqs. (16), (28) and (29), we obtain a condition on H 0 that must be satisfied at the onset of
localization:

H 0 ¼ �P0 : E0 : Q0 þ a �M0e � b� w
ða �M0e � nÞðb �M0e � nÞ

n �M0e � n ð30Þ

where the scalar w is given as

w ¼ KFn �M0e � n
1þ KFn �M0e � n ð31Þ

Following Ottosen and Runesson (1991), the critical-hardening modulus H 0
cr corresponding to strain

localization is defined as the constrained maximization of H 0 over all possible shear band directions n for
a given state, i.e.

H 0
cr ¼ MaxH 0ðnÞ; s:t: jnj ¼ 1 ð32Þ

Assuming that the solid phase is isotropic, then

Es ¼ 2G I
�

þ m
1� 2m

d � d
�

ð33Þ

where G is the shear modulus and m is Poisson’s ratio of the solid phase. In general, 0 < m < 1=2.
Inserting Eq. (33) into (13), we have

E0 ¼ 2Gð1� mFÞ I
�

þ m
1� 2m

�
� KF

2G

�
d � d

�
ð34Þ

Substituting Eq. (34) into (23), it has

L0e ¼ Gð1� mFÞ
1

1� 2m

��
� KF

G

�
n� nþ d

�
ð35Þ
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M0e ¼ 1

Gð1� mFÞ
ð1� 2mÞKF � G

Gþ ð1� 2mÞðG� KFÞ
n

�
� nþ d

�
ð36Þ

and the vectors a and b in Eq. (24) can be expressed as

a ¼ 2Gð1� mFÞ P0 � n
�

þ m
1� 2m

�
� KF

2G

�
ðtrP0Þn

�
ð37Þ

b ¼ 2Gð1� mFÞ Q0 � n
�

þ m
1� 2m

�
� KF

2G

�
ðtrQ0Þn

�
ð38Þ

By substituting Eqs. (34) and (36)–(38) into Eqs. (30) and (31), it has

H 0

2eGG ¼ 2n � ðP0 �Q0Þ � nþ ~mmð1� wÞ
1� ~mm

½ðn �Q0 � nÞ trP0 þ ðn � P0 � nÞ trQ0


� 1þ ð1� 2~mmÞw
1� ~mm

ðn � P0 � nÞðn �Q0 � nÞ � ~mmð1� 2~mmÞ þ ~mm2w
ð1� ~mmÞð1� 2~mmÞ ðtrP

0ÞðtrQ0Þ � P0 : Q0 ð39Þ

where

w ¼ 1� 2~mm
1� ~mm

KF

2eGG
 !

1

 
þ 1� 2~mm

1� ~mm
KF

2eGG
!�1

ð40Þ

eGG ¼ 1ð � mFÞG ð41Þ

~mm ¼ 2mG� 1� 2mð ÞKF

2 G� 1� 2mð ÞKF½ 
 ð42Þ

When the porosity mF ¼ 0, the porous material reduces to a single-phase solid material, i.e., KF ¼ 0,
w ¼ 0. As a result, the solution of the porous media expressed by Eq. (39) reduces to the solution of the
single-phase solid obtained by Ottosen and Runesson (1991).

When the porosity mF 6¼ 0 and the saturation mL ¼ 0, the porous media are mixtures made up of a solid
and a gas, namely KF ¼ KG. With the increment of the gas compressibility, KF ¼ KG ! 0, and then w ! 0,
~mm ! m. When the porous media are fully saturated, as liquid has little compressibility, KF ¼ KL ! 1, which
causes w ! 1=mF, ~mm ! 1=2. Thus, for the porous media in geotechnical engineering, the parameter w can
reflect the degree of saturation of the porous media indirectly, and 0 < w < 1=mF. For soils the ratio KF=2G
generally ranges from 10�1 to 103, which represents the extreme states of moduli for partial and full liquid
saturation, respectively. Choosing m ¼ 0:2, which is typical for clay, and assuming mF ¼ 0:4, then w ranges
from 0:12 to 2:5. In addition, it should be noted that the parameter ~mm ranges from �1 to þ1 with the
variation of ratio KF=2G when Poisson’s ratio m remains constant.

4. Critical hardening modulus and the corresponding direction of shear band initiation under plane strain

condition

It is assumed that P0 and Q0 possess the same principal directions and two of the principal directions (x1
and x2) are located in the plane of interest. Hence, the x3-direction is out of plane and n3 ¼ 0. Without loss
of generality we also label the in-plane axes so that P 0

1 P P 0
2. Under very mild constraints on the flow rule,

this choice will also imply that Q0
1 PQ0

2, which is assumed subsequently.
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With the assumption given above, the expression for H 0 at strain localization in plane strain can be
expressed as a special case of Eq. (39), i.e.

H 0

2eGG ¼ a1n21 þ a2n22 �
1þ ð1� 2~mmÞw

1� ~mm
P 0
1n

2
1



þ P 0

2n
2
2

�
Q0

1n
2
1



þ Q0

2n
2
2

�
� k ð43Þ

where

aa ¼ 2P 0
aQ

0
a þ

~mmð1� wÞ
1� ~mm

ðQ0
a trP

0 þ P 0
a trQ

0Þ; a ¼ 1; 2 ðno summationÞ ð44Þ

and

k ¼ ~mmð1� 2~mmÞ þ ~mm2w
ð1� ~mmÞð1� 2~mmÞ ðtrP

0ÞðtrQ0Þ þ P 0
1Q

0
1 þ P 0

2Q
0
2 þ P 0

3Q
0
3 ð45Þ

In order to get the critical value H 0
cr corresponding to initiation of shear banding, we differentiate Eq.

(43)

d

dðn21Þ
H 0

2eGG
� �

¼ 1

1� ~mm
c1
�

� ðc1 � c2Þn21


¼ 0 ð46Þ

where c1 and c2 are given as

c1 ¼ ðP 0
1 � P 0

2ÞðQ0
1 þ ~mmQ0

3Þ þ ðQ0
1 � Q0

2ÞðP 0
1 þ ~mmP 0

3Þ � wr1 ð47Þ

c2 ¼ ðP 0
1 � P 0

2ÞðQ0
2 þ ~mmQ0

3Þ þ ðQ0
1 � Q0

2ÞðP 0
2 þ ~mmP 0

3Þ � wr2 ð48Þ
and r1 and r2 are given as

r1 ¼ ðP 0
1 � P 0

2Þ½~mm trQ
0 þ ð1� 2~mmÞQ0

2
 þ ðQ0
1 � Q0

2Þ½~mm trP0 þ ð1� 2~mmÞP 0
2
 ð49Þ

r2 ¼ ðP 0
1 � P 0

2Þ½~mm trQ
0 þ ð1� 2~mmÞQ0

1
 þ ðQ0
1 � Q0

2Þ½~mm trP0 þ ð1� 2~mmÞP 0
1
 ð50Þ

If

d2

dðn21Þ
2

H 0

2eGG
� �

¼ � 1

1� ~mm
ðc1 � c2Þ < 0 ð51Þ

is satisfied, then the solutions of Eq. (46) which satisfy 06 n21 6 1 correspond to the maximum value of
H 0.

Only the case defined by P 0
1 > P 0

2, Q
0
1 > Q0

2 will be discussed hereafter. From Eq. (46), it has

n21 ¼
c1

c1 � c2
; n22 ¼ 1� n21 ¼ � c2

c1 � c2
ð52Þ

which is valid whenever 06 n21 6 1 (or 1P n22 P 0) is satisfied, then the directions of shear band initiation
can be defined as

tan2 h ¼ n21
n22

¼ � c1
c2

ð53Þ

where h denotes the angle in the x1, x2-plane between the x2-axis and the normal vector n1; n2ð Þ, and it
is assumed that 0�6 h6 90�. The corresponding maximum hardening modulus H 0

cr can be obtained by
inserting Eq. (52) into Eq. (43).

If the condition 06 n21 6 1 is not satisfied, the following cases occur:

• When d
dðn2

1
Þ

H 0

2eGG� �
< 0, H 0 assumes its maximum value when h ¼ 0�.

• Similarly, when d
dðn2

1
Þ

H 0

2eGG� �
> 0, H 0 assumes its maximum value at h ¼ 90�.
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5. Analysis of strain localization based on the Mohr–Coulomb criterion

The Mohr–Coulomb yield criterion and plastic potential can be defined as follows:

F ¼ 1
2

r0
I



� r0

III

�
þ 1

2
r0
I



þ r0

III

�
sinu � c ¼ 0 ð54Þ

G ¼ 1
2

r0
I



� r0

III

�
þ 1

2
r0
I



þ r0

III

�
sinu� ð55Þ

where r0
I P r0

II P r0
III are the effective principal stresses (which are taken positive in compression), u is the

angle of internal friction, u� is the angle of dilatancy, and c is a cohesion intercept. It should be noted that
generally u P u� P 0.

Since the in-plane effective principal stresses are usually defined as r0
1 P r0

2, there are three cases de-
pending on the magnitude of the out-of-plane stress r0

3.
Case A. When r0

1 P r0
2 P r0

3, it has r0
I ¼ r0

1 and rIII ¼ r0
3, and from Eqs. (54) and (55),

P 0
1 ¼ 1

2
1ð þ sinuÞ; P 0

2 ¼ 0; P 0
3 ¼ �1

2
1ð � sinuÞ ð56Þ

Q0
1 ¼ 1

2
1ð þ sinu�Þ; Q0

2 ¼ 0; Q0
3 ¼ �1

2
1ð � sinu�Þ ð57Þ

and

trP0 ¼ sinu; trQ0 ¼ sinu� ð58Þ

Substituting Eqs. (56)–(58) into Eqs. (47) and (48), it has

c1 ¼
1

2
A1 �

~mmw
2
A2; c2 ¼ � ~mm

2
A3 �

w
2
A4 ð59Þ

where

A1 ¼ 1� ~mm þ sinu þ sinu� þ ð1þ ~mmÞ sinu sinu�

A2 ¼ sinu þ sinu� þ 2 sinu sinu�

A3 ¼ 1� sinu sinu�

A4 ¼ 1� 2~mm þ ð1� ~mmÞðsinu þ sinu�Þ þ sinu sinu�

If the condition defined by Eq. (51) is satisfied, from Eqs. (52) and (53), the following can be derived

n21 ¼
A1 � ~mmwA2

A1 � ~mmwA2 þ ~mmA3 þ wA4

; n22 ¼
~mmA3 þ wA4

A1 � ~mmwA2 þ ~mmA3 þ wA4

ð60Þ

tan2 h ¼ A1 � ~mmwA2

~mmA3 þ wA4

ð61Þ

which is valid whenever 06 n21 6 1. The corresponding maximum hardening modulus can be obtained by
substituting Eq. (60) into (43).

Case B. When r0
1 P r0

3 P r0
2, it has r0

I ¼ r0
1 and r0

III ¼ r0
2, and from Eqs. (54) and (55),

P 0
1 ¼ 1

2
1ð þ sinuÞ; P 0

2 ¼ �1
2
1ð � sinuÞ; P 0

3 ¼ 0 ð62Þ

Q0
1 ¼ 1

2
1ð þ sinu�Þ; Q0

2 ¼ �1
2
1ð � sinu�Þ; Q0

3 ¼ 0 ð63Þ

and
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trP0 ¼ sinu; trQ0 ¼ sinu� ð64Þ
Then c1 and c2 can be similarly derived and given as

c1 ¼
1

2
B1 �

w
2
B2; c2 ¼ � 1

2
B3 þ

w
2
B4 ð65Þ

where

B1 ¼ 2þ sinu þ sinu�

B2 ¼ 4~mm � 2þ sinu þ sinu�

B3 ¼ 2� sinu � sinu�

B4 ¼ 4~mm � 2� sinu � sinu�

If the condition defined by Eq. (51) is satisfied, then

n21 ¼
B1 � wB2

B1 � wB2 þ B3 � wB4

; n22 ¼
B3 � wB4

B1 � wB2 þ B3 � wB4

ð66Þ

tan2 h ¼ B1 � wB2

B3 � wB4

ð67Þ

which is valid whenever 06 n21 6 1. The corresponding maximum hardening modulus can be obtained by
substituting Eq. (66) into (43).

Case C. If r0
3 P r0

1 P r0
2, then r0

I ¼ r0
3, r0

III ¼ r0
2, and from Eqs. (54) and (55), it has

P 0
1 ¼ 0; P 0

2 ¼ �1
2
1ð � sinuÞ; P 0

3 ¼ 1
2
1ð þ sinuÞ ð68Þ

Q0
1 ¼ 0; Q0

2 ¼ �1
2
1ð � sinu�Þ; Q0

3 ¼ 1
2
1ð þ sinu�Þ ð69Þ

where

trP0 ¼ sinu; trQ0 ¼ sinu� ð70Þ
Similarly, it has

c1 ¼
~mm
2
C1 �

w
2
C2; c2 ¼

1

2
C3 �

~mmw
2
C4 ð71Þ

where

C1 ¼ 1� sinu sinu�

C2 ¼ 2~mm � 1þ ð1� ~mmÞðsinu þ sinu�Þ � sinu sinu�

C3 ¼ ~mm � 1þ sinu þ sinu� � ð1þ ~mmÞ sinu sinu�

C4 ¼ sinu þ sinu� � 2 sinu sinu�

If the condition defined by Eq. (51) holds, then

n21 ¼
~mmC1 � wC2

~mmC1 � wC2 � C3 þ ~mmwC4

; n22 ¼
�C3 þ ~mmwC4

~mmC1 � wC2 � C3 þ ~mmwC4

ð72Þ

tan2 h ¼ ~mmC1 � wC2

�C3 þ ~mmwC4

ð73Þ
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which is valid whenever 06 n21 6 1. The corresponding maximum hardening modulus can be similarly
determined by substituting Eq. (72) into (43).

6. Comparison with the experimental results

The behavior of water-saturated granular materials subjected to undrained deformations under plane
strain condition has been investigated by Han and Vardoulakis (1991). The experimental results about the
shear band orientations H presented in that study indicate a relation H ¼ 90�� h. When the porous media
are fully saturated, by assuming the liquid is completely incompressible, from Eqs. (40) and (42), it has
w ¼ 1=mF, and ~mm ¼ 0:5. Hence it can be concluded that the properties of strain localization of fully satu-
rated porous media under undrained conditions are independent of Poisson’s ratio if assuming the liquid is
totally incompressible.

Although the liquid in fully saturated porous media has little compressibility, it is in fact not com-
pletely incompressible. Here we let KF=2G ¼ 1000 correspond to the fully saturated state, then from
Eq. (42) it has

~mm ¼ 2001m � 1000

4000m � 1999
ð74Þ

It is noted from Eq. (74) that the values of ~mm are approximately equal to 0.50025 when Poisson’s ratio m
ranges from 0.01 to 0.49. Hence it can be regarded that the properties of strain localization of fully sat-
urated porous media under undrained conditions are almost independent of Poisson’s ratio.

For the plane strain problems in practical engineering, the out-of-plane principal stress is usually the
intermediate principal stress (Lee and Ghosh, 1996), and the stress state is the same as that of case B in
Section 5. If the deformation inside the shear band is undrained and the band material is fully saturated, the
shear band dilatancy angle u� must be zero (Han and Vardoulakis, 1991). Table 1 shows the comparison of
the experiment results and the solutions with the present method in this paper (based on the Mohr–
Coulomb yield criterion).

It is observed from Table 1 that the solution derived by the present method which considers the influence
of the porosity on the properties of shear banding are in good agreement with the experimental results.

7. Examples

In this section, based on the Mohr–Coulomb criterion, the influences of some material parameters on the
properties of the strain localization for the plane strain problems are discussed. As the out-of-plane
principal stress is usually the intermediate principal stress for the plane strain problems in practical engi-
neering, only the stress state of case B in Section 5 is considered.

Table 1

Comparison of shear band directions

Test mF u u� H (experiment) H ¼ 90�� h (present theory)

DC4 0:393 �33� 0� 57� 57:4�
DC11 0:374 �32� 0� 60� 58:2�
LC3 0:371 �29� 0� 60� 57:2�
LC4 0:410 �17� 0� 56� 51:3�
DC17 0:407 �30� 0� 55� 55:7�
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When KF=G ¼ 1, the porous media are in the case of partial saturation. The dependence of the initiation
direction of the shear band and the corresponding maximum hardening modulus on the porosity is shown
in Figs. 1 and 2, which is for the particular choice u ¼ 25� and u� ¼ 5� and for different values of Poisson’s
ratio m. It can be observed from Fig. 1 that the direction h of the shear band initiation decreases with the
increase of the porosity mF for all the three cases with m ¼ 0:2, m ¼ 0:3 and m ¼ 0:4. It also shows that at the
same porosity, the angle h of the shear band initiation is larger when Poisson’s ratio is larger. It is shown
from Fig. 2 that the effect of porosity on the hardening modulus is much dependent on Poisson’s ratio.
When the porosity remains constant, the hardening modulus decreases with the increase of Poisson’s ratio.

Fig. 1. Variation of the shear band direction with the porosity for u ¼ 25�, u� ¼ 5� in the case r0
1 P r0

3 Pr0
2 based on the Mohr–

Coulomb yield criterion for partially saturated porous media.

Fig. 2. Variation of the maximum hardening modulus with the porosity for u ¼ 25�, u� ¼ 5� in the case r0
1 P r0

3 Pr0
2 based on the

Mohr–Coulomb yield criterion for partially saturated porous media.
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When KF=2G ¼ 1000, the porous media can be regarded as fully saturated. The effect of the porosity on
the initiation direction of the shear band and the corresponding maximum hardening modulus is respec-
tively shown in Figs. 3 and 4 for the case of u ¼ 25� and u� ¼ 5�. It is obvious from Figs. 3 and 4 that the
porosity of the porous media significantly influences the initiation direction of the shear band and the
corresponding maximum hardening modulus. Thus it is of great importance to take account of the porosity
in the analysis of the strain localization properties of porous media. Furthermore, for fully saturated
porous media with u ¼ 25� and mF ¼ 0:4, variation of the direction of the shear band initiation and the
corresponding maximum hardening modulus with the angle of dilatancy that ranges from 0� to 25� is
estimated and shown in Figs. 5 and 6, respectively. It is observed that the angle h of the shear band ini-
tiation decreases almost linearly with the increase of the dilatancy angle while the corresponding hardening
modulus increases almost linearly with the increase of the dilatancy angle.

Fig. 3. Variation of the shear band direction with the porosity for u ¼ 25�, u� ¼ 5� in the case r0
1 Pr0

3 P r0
2 based on the Mohr–

Coulomb yield criterion for fully saturated porous media.

Fig. 4. Variation of the maximum hardening modulus with the porosity for u ¼ 25�, u� ¼ 5� in the case r0
1 Pr0

3 Pr0
2 based on the

Mohr–Coulomb yield criterion for fully saturated porous media.
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Finally, the influence of degree of saturation on the properties of strain localization is investigated. As it
ranges from 0 to 1=mF when the ratio KF=2G varies from 0 to 1, the parameter w indicates indirectly the
degree of saturation of the porous media. The relation between the direction h of shear band initiation and
the parameter w is shown in Fig. 7 while that between the corresponding hardening modulus H 0

cr and the
parameter w is shown in Fig. 8, both for the case of u ¼ 25�, u� ¼ 5�, mF ¼ 0:4 and m ¼ 0:2. It is shown that
the angle h of shear band initiation decreases with the increase of the degree of saturation. However, the
hardening modulus decreases slightly with the increase of the degree of saturation when the degree of
saturation is low, and increases sharply with the increase of the degree of saturation when the degree of
saturation is high.

Fig. 5. Variation of the shear band direction with the dilatancy angle for u ¼ 25� and mF ¼ 0:4 in the case r0
1 Pr0

3 Pr0
2 based on the

Mohr–Coulomb yield criterion for fully saturated porous media.

Fig. 6. Variation of the maximum hardening modulus with the dilatancy angle for u ¼ 25� and mF ¼ 0:4 in the case r0
1 P r0

3 Pr0
2 based

on the Mohr–Coulomb yield criterion for fully saturated porous media.
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8. Conclusions

Within the general framework of mixture theory, the effective stress–strain and total stress–strain re-
lations of the three-phase elastic–plastic porous media under undrained conditions are derived. Based on
the obtained elastic–plastic constitutive equations and by introducing the fictitious ‘‘fluid phase’’ as a
mixture of liquid and gas, the conditions for localization of deformation into a shear band in the incre-
mental response of partially saturated and fully saturated porous media under undrained conditions are
determined, in which the effect of porosity on the strain localization is included.

The explicit analytical expressions of the direction of shear band initiation and the corresponding
hardening modulus of the porous media for the plane strain case are deduced. With reference to Mohr–
Coulomb yield criterion, an analysis of the influence of the porosity on the properties of strain localization
is performed. The results indicate that the properties of strain localization are much dependent on the

Fig. 8. Variation of the maximum hardening modulus H 0
cr with w for u ¼ 25�, u� ¼ 5�, mF ¼ 0:4 and m ¼ 0:2 in the case r0

1 P r0
3 Pr0

2

based on the Mohr–Coulomb yield criterion.

Fig. 7. Variation of the shear band direction h with w for u ¼ 25�, u� ¼ 5�, mF ¼ 0:4 and m ¼ 0:2 in the case r0
1 Pr0

3 Pr0
2 for based on

the Mohr–Coulomb yield criterion.
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porosity, and the relation between the shear band property of partially saturated porous media and the
porosity depends on Poisson’s ratio m. However, the properties of strain localization for the fully saturated
porous media are almost independent of Poisson’s ratio. If assuming the liquid is totally incompressible, the
strain localization of fully saturated porous media under undrained conditions is completely independent of
Poisson’s ratio.

Parametric investigation of the influences of the degree of saturation and the angle of dilatancy on the
properties of strain localization indicates that both the degree of saturation and the angle of dilatancy
are of great importance in the analysis of strain localization for the porous media. On the basis of Mohr–
Coulomb yield criterion, use is made of the theory presented in this paper to obtain the solutions of the
shear banding orientation, which are proved to be in good agreement with the experimental results.
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